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Abstract

Nonsense-mediated mRNA decay (NMD), which is best known for degrading mRNAs with premature termination codons
(PTCs), is thought to be triggered by aberrant translation termination at stop codons located in an environment of the
mRNP that is devoid of signals necessary for proper termination. In mammals, the cytoplasmic poly(A)-binding protein 1
(PABPC1) has been reported to promote correct termination and therewith antagonize NMD by interacting with the
eukaryotic release factors 1 (eRF1) and 3 (eRF3). Using tethering assays in which proteins of interest are recruited as MS2
fusions to a NMD reporter transcript, we show that the three N-terminal RNA recognition motifs (RRMs) of PABPC1 are
sufficient to antagonize NMD, while the eRF3-interacting C-terminal domain is dispensable. The RRM1-3 portion of PABPC1
interacts with eukaryotic initiation factor 4G (eIF4G) and tethering of eIF4G to the NMD reporter also suppresses NMD. We
identified the interactions of the eIF4G N-terminus with PABPC1 and the eIF4G core domain with eIF3 as two genetically
separable features that independently enable tethered eIF4G to inhibit NMD. Collectively, our results reveal a function of
PABPC1, eIF4G and eIF3 in translation termination and NMD suppression, and they provide additional evidence for a tight
coupling between translation termination and initiation.
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Introduction

The term ‘‘nonsense-mediated mRNA decay’’ (NMD) describes

one or possibly several closely related posttranscriptional processes

in eukaryotic cells leading to the degradation of mRNA molecules

that fail to properly terminate translation (Kervestin and Jacobson,

2012; Schweingruber et al., 2013). NMD functions as a quality

control system by targeting aberrant mRNAs harboring premature

termination codons (PTCs), but at the same time it is also an

important regulator of gene expression by affecting the abundance

of 5–10% of all mRNAs in mammals [1–9]. Knockouts of genes

encoding the NMD factors UPF1, UPF2 or SMG1 cause early

embryonic lethality in mice [6,10,11], and knockdowns of UPF1,

SMG1 or SMG6 are even lethal in cultured human cells (own

unpublished observations), indicating that NMD is essential for

viability of mammalian cells. Because approximately one third of

all known disease-causing mutations in humans result in the

production of PTC-containing mRNAs, NMD activity modulates

the clinical manifestations of many of these genetic diseases, often

to the benefit but sometimes to the disadvantage of the patients

[12,13]. There is therefore considerable medical and pharmaceu-

tical interest in elucidating the molecular mechanism of NMD.

There is evidence that NMD is triggered by prolonged ribosome

stalling at termination codons [14,15]. Aberrant or maybe simply

too slow translation termination is thought to allow the activation

of the mRNA-bound UPF1, leading to the subsequent assembly of

additional NMD factors, including the endonuclease SMG6 and/

or the heterodimer SMG5-SMG7, which in turn recruits the

CCR4-NOT deadenylase complex [16–19]. In addition, a link is

provided between the NMD factors and the decapping complex

by the human proline-rich nuclear receptor coregulatory protein 2

(PNRC2) [20].

This kinetic NMD model implies that proper translation

termination depends on specific termination promoting signals.

It is well documented that bringing the cytoplasmic poly(A)-

binding protein (PABPC1 in human cells) into proximity of an

NMD-eliciting termination codon suppresses NMD [15,21–25].

How PABP antagonizes NMD is not yet understood, but the

reported interaction of its C-terminal domain (PABC) with the

eukaryotic release factor 3 (eRF3) [26–28] and the evidence for an

interaction between eRF3 and UPF1 [23,25,29,30] led to the

model that a competition between UPF1 and PABP for interacting

with eRF3 at the terminating ribosome determines whether or not
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NMD ensues [31]. Supporting this model, Singh and colleagues

showed with recombinant proteins that PABPC1 efficiently

antagonizes the interaction between eRF3 and UPF1 [25].

However, recent work with S.cerevisiae indicated that NMD

activation is more complex and involves more than a simple

competition between these factors [32].

Here, we analyzed the effect of different PABPC1 deletions or

mutants on the stability of an NMD-subjected reporter mRNA

using a tethering approach. Unexpectedly, an N-terminal

fragment of PABPC1 comprising the first three RNA recognition

motifs (RRMs) was sufficient for NMD suppression when tethered

to the reporter transcript, whereas the eRF3-interacting PABC

domain was dispensable. Since the eukaryotic translation initiation

factor 4G (eIF4G) interacts with RRM1/RRM2 of PABPC1, we

also tethered eIF4G downstream of the PTC in our NMD reporter

and found that it suppressed NMD to the same extent as PABPC1.

Subsequent mapping of the NMD-suppressing eIF4G domains

revealed two apparently independent pathways of suppression.

The N-terminus of eIF4G antagonized NMD through its

interaction with PABPC1, and the eIF3-interacting core domain

of eIF4G also suppressed NMD.

Results

PABPC1 in the vicinity of a PTC antagonizes NMD
Tethering of proteins to NMD reporter transcripts is a powerful

assay to identify proteins and domains thereof that are capable of

promoting or antagonizing NMD. Using such tethering systems,

PABPC1 was previously shown to suppress NMD when tethered

to an NMD reporter mRNA in the vicinity of the PTC [15,21–25]

(Figure 1). PABPC1 is the main cytoplasmic PABP and consists

of four non-identical RRMs followed by a linker region and the

eRF3-binding PABC domain (Figure 1A). Each RRM contains

two conserved RNPs (ribonucleoprotein domains) that are

necessary and sufficient for binding RNA molecules in a wide

range of specificities and affinities [33]. Poly(A) stretches are bound

with high affinity by RRM1 and RRM2 of PABPC1 and with

lower affinity by RRM3 and RRM4 [34]. A minimum of 12

nucleotides are needed for binding, but up to 25 nucleotides are

covered upon saturation of long poly(A) [35]. RRM1 and RRM2

are also involved in the interaction to eIF4G and to the PABP-

interacting proteins (PAIP1 and PAIP2) [36–38]. The interaction

between the N-terminal part of eIF4G and RRM1/2 of PABPC1

results in a circularization of the mRNA [37,39] that can influence

translational processes. It is thought that the formation of this

‘closed loop’ structure of the mRNP is crucial for PABP’s activities

in promoting translation initiation and termination, recycling of

ribosomes, and mRNA stability [40–44]. The four RRMs are

followed by an unstructured, proline- and glutamine-rich linker

region that is involved in the multimerisation of PABPC1 [35].

The C-terminal domain of PABPC1 (PABC, also known as

MLLE) recruits several translation factors possessing the PABP-

interacting motif 2 (PAM2) to the poly(A) tail of mRNAs

[28,38,45]. Proteins with PAM2 include eRF3, eIF4B, PAIP1

and PAIP2 [26,44,46–49].

To map the domains of PABPC1 required for NMD

suppression, different parts of PABPC1 were fused to the N-

terminus of an HA-tagged MS2 coat protein and transiently

expressed in HeLa cells, together with a minim ter310 NMD

reporter gene containing six MS2 binding sites (6 MS2) located

either approximately 50 nucleotides downstream of the ter310

codon (construct A) or several hundred nucleotides downstream as

a control (construct B) (Figure 1B). For all experiments, the

expression of the MS2 fusion proteins was monitored by SDS-

PAGE and western blotting.

Confirming previous observations [21–25], tethering of full

length PABPC1 (1–636-MS2) increased the abundance of

construct A about 9-fold compared to tethering of MS2 alone,

but led to no stabilization of the control construct B (Figure 1C),

consistent with the proposed role of PABPC1 in antagonizing

NMD and promoting correct translation termination.

RRM1-2, but not the PABC domain, is required for NMD
suppression

Next, we tested several deletion mutants of PABPC1 for their

ability to increase the NMD reporter transcript in the tethering

assay. Unexpectedly, deletion of the C-terminal part of PABPC1

(PABC; construct 1–545-MS2), which is crucial for its interaction

with eRF3 [26,27] and which was reported to be required for

stabilization in previous tethering assays [24], increased the RNA

level of reporter construct A as efficiently as full length PABPC1

(Figure 1C). A similar increase in NMD reporter RNA was

observed by tethering of PABPC1 lacking RRM1-2 (180–636-

MS2). Since PABPC1 was shown to multimerize through its linker

domain (amino acids 372–545, Figure 1A) [50], we reasoned that

the presence of this domain in our tethering assay might result in

the co-recruitment of endogenous PABPC1 to the reporter

transcript, thereby obscuring our mapping approach. Therefore,

we deleted this linker domain from the subsequent PABPC1

deletion constructs. Deletion of the linker domain resulted in a loss

of more than half of the stabilization effect seen with full length

PABPC1, suggesting that full stabilization might indeed require

multimeric PABP (Figure 1C, compare 1–636-MS2 with 1–

636DL-MS2). Even in the context of the linker deletion, the PABC

domain was dispensable for NMD inhibition: tethering of RRM1-

4 (1–372-MS2) and RRM1-3 (1–279-MS2) of PABPC1 still

increased the abundance of the NMD reporter construct A. On

the other hand, deletion of the first 180 amino acid residues (180–

636DL-MS2) resulted in the loss of construct A mRNA

stabilization (Figure 1C). Taken together, these results indicate

that the first two RRMs of PABPC1 are required and first three

RRMs are sufficient to suppress NMD in our tethering assay.

Interaction between PABPC1 and eIF4G provides a
possible signal for NMD suppression

The described experiments imply that the first two RRMs are

important for the increase of the reporter mRNA. Since PABPC1

interacts with eIF4GI through the second RRM [37,39,51], we

wondered if eIF4GI might play a role in the observed effect on

NMD reporters by tethered PABPC1. To investigate this, we

introduced a mutation (M161A) into RRM2 that abolishes

PABPC1’s interaction to eIF4GI in vitro [41,52]. We analyzed

the effect of this mutation in the context of the full length PABPC1

(1–636-MS2) and the truncation comprising the four complete

RRMs (1–372-MS2, Figure 2A). For this and all subsequent

tethering experiments, we used a 70 kDa fragment of the bacterial

b-galactosidase protein fused to MS2 (LacZ-MS2) as the negative

control instead of the MS2 protein alone (Figure 1C), because we

noticed during the course of our study that compared to no tether

(mock transfection with a plasmid not expressing any MS2 fusion

protein) or tethering of another unrelated protein (SLBP-MS2),

LacZ-MS2 did not affect our reporter constructs, whereas MS2

alone consistently reduced the mRNA levels of the NMD reporter

construct A (Figure S1 and data not shown).

The eIF4G interaction mutants (1–636M161A-MS2 and 1–

372M161A-MS2) had a reduced ability to suppress NMD of

eIF4G Tethering Antagonizes NMD
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Figure 1. The C-terminal domain of PABPC1 is dispensable for inhibition of NMD, RRMs1-3 are sufficient, and RRMs1-2 are
necessary. (A) Schematic representation of the eukaryotic cytoplasmic poly(A) binding protein (PABPC1). Domains are color-coded and assigned
functions and interaction partners are depicted at the corresponding position above the scheme. Numbers below represent amino acid positions. (B)
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minim ter310 construct A compared to the corresponding non-

mutated proteins (1–636-MS2, 1–372-MS2), with the lower NMD

suppression capacity only being statistically significant for the

shorter 1–372 construct (Figure 2A). Tethered PABPC1 1–

372M161A-MS2A could also not suppress NMD on another

reporter construct consisting of the TCRbopen reading frame and

a PTC at amino acid position 68, followed by six MS2 binding

sites in close proximity (TCRb ter68 construct A) or further

downstream (TCRb ter68 construct B; Figure S2; see also [22]).

On both reporter transcripts, we observed with the RRM1-4

constructs that the mutant (1–372M161A-MS2) lost its ability to

increase the reporter mRNA levels, suggesting that NMD

inhibition mediated by the tethered RRM1-4 PABPC1 requires

interaction with eIF4G.

Next we compared the capacity of M161A mutants and non-

mutated PABPC1 versions for binding to eIF4G by co-immuno-

precipitation assays (Figure 2B). Initial attempts to co-immuno-

precipitate endogenous eIF4G with PAPBC1-MS2-HA constructs

failed, possibly because only a very small fraction of the highly

expressed recombinant PABPC1 assembled with eIF4G. Notably,

this problem was also reported by Imataka and colleagues [37].

Therefore, we decided to exogenously express eIF4GI (isoform e,

fused to MS2-HA) together with HA-tagged PABPC1 constructs

(lacking the MS2 coat protein), followed by immunoprecipitation

of eIF4GIe-MS2-HA using an anti-MS2 antibody and probing for

associated PABPC1 using an anti-HA antibody. Hence, eIF4GIe-

MS2 was co-transfected with the full length PABPC1, with (1–

636M161A) or without (1–636) the mutation, or with the RRM1-4

constructs with (1–372M161A) or without (1–372) the mutation.

As a control, LacZ-MS2 was immunoprecipitated from cells co-

expressing PABPC1 1–372. No PABPC1 co-purified with LacZ-

MS2, confirming the specificity of our assay (Figure 2B, lower

panel). Similar amounts of full length PABPC1 co-immunopre-

cipitated with eIF4GIe-MS2, irrespectively whether PABPC1

carried the M161A mutation or not (Figure 2B, upper left

panel). The presence of the linker domain in the full length

PABPC1 constructs probably enables the M161A mutant to

multimerize with endogenous PABPC1, which in turn interacts

with eIF4GIe (see below). Consistent with this explanation, the

M161A mutation led to a reduced association of truncated

PABPC1 (1–372) with eIF4GIe-MS2 (Figure 2B, upper right

panel), indicating that the in vitro identified M161 residue is only

critical for the interaction with eIF4G in vivo under conditions

that prevent PABPC1 multimerization. Despite of the complica-

tion due to PABPC1 multimerization, collectively these results

suggest a role of eIF4G in antagonizing NMD.

Depletion of eIF4GI reduces NMD suppression by
PABPC1

To further investigate the apparent role of eIF4GI in PABPC1-

mediated NMD suppression, we performed our PABPC1 tethering

assay in cells depleted for eIF4GI (Figure 3). Knockdown of

eIF4GI was achieved by expressing an shRNA directed against

eIF4GI mRNA (Figure 3, eIF4GI kd). Expression of an shRNA

that is predicted to not target any human mRNA served as a

control (control kd). The efficacy of the eIF4GI knockdown was

monitored by western blotting (Figure 3B, Anti-eIF4GI). The

tethering assay was performed with LacZ-MS2 (as the control), full

length PABPC1 (1–636-MS2) and the two truncations still able to

stabilize the NMD reporter (1–372-MS2 and 1–279-MS2).

In comparison to the previous experiments, the reporter mRNA

increased much more by tethering the different PABPC1 variants

(Figure 3A). For example, 1–636-MS2 increased the reporter

about 20 fold, compared to 7–8 fold previously. In the knockdown

experiments, the reporter mRNA and the tethered proteins are

expressed in the cells for a longer time than in the standard

tethering experiments, and we speculate that this prolonged time

window allowed the stabilized NMD reporter mRNA to accumu-

late to higher levels. More importantly, in the eIF4GI-depleted

cells the reporter increased mRNA level caused by tethered full

length PABPC1 (1–636-MS2) was significantly reduced relative to

the control knockdown. A less pronounced and statistically not

significant reduction was also observed with the truncations

containing all four RRMs (1–372-MS2) or RRMs1-3 (1–279-

MS2). Depletion of eIF4GI is known to affect multiple cellular

processes including protein synthesis [53]. Since NMD depends on

translation, one might have expected eIF4GI depletion to result in

a further stabilization of the NMD reporter transcript. Contrary to

this, the observed reduction in stabilization of the reporter mRNA

levels in eIF4GI-depleted cells provides further evidence for a role

of eIF4GI in suppression of NMD by tethered PABPC1.

Tethered eIF4GI isoforms capable of interacting with
PABPC1 suppress NMD

Next we wanted to test whether direct tethering of eIF4GI to

our NMD reporter would also lead to its stabilization. Six isoforms

of eIF4GI are known that differ in the length of the N-terminus of

the protein, with the shortest isoform being called a and the

longest one f (Figure 4A). Isoforms c and d differ in only one

amino acid and are therefore usually not distinguished [53]. We

fused to the C-terminus of the eIF4GI isoforms f, e, d, b, and a the

MS2 coat protein and transiently transfected these plasmids into

HeLa cells together with either the minim ter310 NMD reporter

gene construct A or B (Figure 4B). Consistent with previous

reports [53], we noticed that eIF4GI was difficult to over-express,

especially the longest isoform eIF4GIf (Figure 4B, lower panel).

Relative to the control (LacZ-MS2), reporter mRNA levels of

construct A were elevated about 4-fold by tethering of isoforms f, e

and d, which is similar as tethering of PABPC1-MS2 (Figure 4B,

upper panel). In contrast, the two shortest isoforms (eIF4GIb and

eIF4GIa) were less efficient in increasing the reporter transcript

levels.

Interestingly, the drop in the capacity to increase the reporter

mRNA level correlates with the potential loss of the ability to

interact with PABPC1. The shortest isoform, eIF4GIa, lacks the

PABP-binding region (amino acids 165–210, Figure 4A), and in

Schematic representation of the minim ter310 NMD reporter gene constructs A and B. The translation initiation codon (1 AUG), the premature
translation termination codon at amino acid position 310 (310 UGA) and the position of the natural translation terminatinon codon (594 UGA) are
shown. The position in the two constructs of the cassette with 6 MS2 binding sites (6 MS2) is depicted as a red box. (C) HeLa cells were transiently
transfected with either the NMD reporter minim ter310 construct A or construct B, plasmids encoding the indicated PABPC1-MS2 fusion protein
variants and a GPx1 expressing plasmid for normalization. 48 h post transfection, RNA was extracted and relative minim ter310 mRNA levels were
determined by RT-qPCR. Minim mRNA levels were normalized to GPx1 mRNA levels and displayed relative to the sample with the MS2-HA protein
(MS2, defined as 100%). The different PABPC1 mutants are shown schematically, using the same domain color-code as in (A). All are fused to the N-
terminus of MS2 followed by a HA-tag at the C-terminus. Average values and standard deviations are shown of two independent experiments with
two mRNA measurements each. A western blot showing the abundance of all PABPC1 fusion proteins is shown in the lower panel. The PABPC1-MS2
constructs were detected with an anti-HA antibody, endogenous SMB/B9 served as a loading control.
doi:10.1371/journal.pone.0104391.g001
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eIF4GIb the proximity of the N-terminus might disturb the

interaction of this amino acid stretch to PABPC1. To experimen-

tally test the ability of the different eIF4GI isoforms for interacting

with PABPC1, we performed immunoprecipitation experiments

(Figure 4C). Different eIF4GI variants were expressed as MS2

fusion proteins in HEK 293T cells and subsequently immunopre-

cipitated with an antibody against the MS2 coat protein. The

longest isoform (eIF4GIf) had to be omitted from this analysis due

Figure 2. A PABPC1 mutation disturbing its association with eIF4G reduces its capacity to suppress NMD. (A) HeLa cells were
transiently transfected with the NMD reporter minim ter310 construct A or construct B, plasmids encoding the indicated PABPC1-MS2 fusion protein
variants and GPx1 as a normalizer. After RNA extraction and RT-qPCR, relative minim ter310 and GPx1 mRNA were measured and normalized as
described in Figure 1C, except that the LacZ-MS2 samples were set as 100%. Full length PABPC1 (1–636-MS2) and a version comprising the first four
RNA recognition motifs (1–372-MS2) with or without the M161A mutation are shown. All proteins are fused to the N-terminus of the MS2 moiety and
contain a HA-tag at the C-terminus. Average values and standard deviations of at least three independent experiments are shown. The right panel
shows a western blot using anti-HA and anti-tubulin antibodies to monitor the expression levels of the transfected MS2 fusion proteins and the
endogenous tubulin as loading control, respectively. (B) To assess the effect of the M161A mutation in PABPC1 on the interaction with eIF4G, HEK
293T cells were transfected with plasmids encoding the eIF4GI isoform e fused to MS2 (eIF4Gle-MS2; see Figure 4) or LacZ-MS2 together with a
plasmid encoding the indicated PABPC1 construct. All proteins were HA-tagged. 48 h post transfection, immunoprecipitations were performed using
an anti-MS2 antibody and the association of the PABPC1 constructs with eIF4Gle was assessed by western blotting using an anti-HA antibody.
Samples before (input) and the supernatant after (unbound) the immunoprecipitations represent 10% of the total material, and 50% of the
immunoprecipitated material (IP) were loaded on the gel.
doi:10.1371/journal.pone.0104391.g002
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to its low expression level (Figure 4B). Using an anti-PABPC1

antibody, we then probed for co-immunoprecipitated endogenous

PABPC1. Confirming the specificity of the immunoprecipitations,

PABPC1 did not co-purify with LacZ-MS2. As predicted, the two

longer isoforms e and d, which both contain the PABP-binding

domain and were active in the tethering assay, both co-

immunoprecipitated PABPC1. In contrast and as suspected,

PABPC1 interaction with the two short eIF4GI isoforms was

impaired with almost no PABPC1 detectable in the immunopre-

cipitate of eIF4GIb and none in the case of eIF4GIa (Figure 4C).

Thus, consistent with our results from tethering PABPC1

fragments, this identifies the interaction between PABPC1 and

eIF4G as a crucial element for preventing NMD.

The core domain of eIF4GI inhibits NMD in a similar
manner as PABPC1

To define additional parts of eIF4GI important for suppressing

NMD in our tethering assay, we divided eIF4GI roughly into three

Figure 3. Depletion of eIF4GI diminishes the stabilization conferred by the full length PABPC1. (A) HeLa cells were transiently
transfected with the NMD reporter minim ter310 construct A, a plasmid encoding the indicated MS2 fusion protein and one encoding GFP for
normalization. In addition, the cells were transfected with a plasmid expressing an shRNA with a scrambled sequence (control kd) or with a sequence
directed against the eIF4Gl mRNA (eIF4Gl kd). Total mRNA was extracted 96 h after transfection, relative minim and GFP mRNA levels were measured
by RT-qPCR, minim mRNA was normalized to GFP mRNA and displayed relative to the LacZ-MS2 samples (set to 100%). Full length PABPC1 (1–636-
MS2), truncations consisting of the first four RNA recognition motifs (1–372-MS2) or the first three RNA recognition motifs (1–279-MS2) were
expressed, each with a C-terminal MS2-HA moiety. Average values and standard deviations of three independent experiments are shown. (B) Western
blot to monitor relative protein levels using antibodies against eIF4GI, the HA-tag and endogenous tubulin. Endogenous eIF4GI was surveyed to
assess the efficacy of the knockdowns, anti-HA allowed detection of the MS2 fusion proteins, and anti-tubulin served as a control for sample loading.
* depicts the high intensity tubulin signal bleeding into the HA-channel of the infrared imaging system.
doi:10.1371/journal.pone.0104391.g003
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parts (Figure 4A and D). For constructs containing the N-

terminus we used isoform eIF4GIe, because eIF4GIf failed to

express consistently to sufficiently high levels. The first fusion

protein (eIF4GIeNT-MS2) consists of the N-terminal third of

eIF4GIe encompassing the PABP and eIF4E interaction domains

(corresponding to amino acids 41–681 in eIF4GIf). The second

construct (eIF4GI682-1130-MS2) comprises the central MIF4G

(middle domain of eIF4GI) domain, and the third fragment

encompasses the C-terminal part of eIF4GI (eIF4GI1080-1599-

MS2), which includes the two C-terminal HEAT repeat domains.

Additionally, we also tested an eIF4GIe construct missing the

central MIF4G domain (eIF4GIeD682-1079-MS2). As before, one

of these MS2 fusion protein-encoding plasmids was co-transfected

into HeLa cells together with the minim ter310 NMD reporter

plasmid, either encoding construct A or B. LacZ-MS2 and

PABPC1-MS2 served again as negative and positive controls,

respectively (Figure 4D). The N-terminal portion of eIF4GI

(eIF4GIeNT-MS2) was not able to increase the mRNA level of

reporter construct A .2 fold relative to LacZ-MS2 and the same

effect was observed when the MS2 binding sites were located

distant from the PTC (construct B). This result was unexpected,

because eIF4GIeNT-MS2 contains the PABP interaction domain.

A caveat here is that compared to the other MS2 fusion proteins,

eIF4GIeNT-MS2 expression was low (Figure 4D, lower panel).

Interestingly, tethering of the eIF4GI core domain (eIF4GI682-

1130-MS2) increased the reporter transcript to a similar extent as

full length PABPC1, even though its abundance was weaker than

that of PABPC1 (Figure 4D). Importantly, this reporter mRNA

accumulation mediated by the eIF4GI core domain seems to

function independently of PABPC1, based on the absence of

PABPC1 in the immunoprecipitate of eIF4GI682-1130-MS2

(Figure 4C). The eIF4GIe construct missing the core domain

(eIF4GIeD682-1079-MS2) affected the reporter mRNA similar as

the N-terminal portion of eIF4GIe alone (eIF4GIeNT-MS2): a

moderate mRNA increase is observed with both reporter

constructs A and B. The reason for this PTC proximity-

independent effect is not known. As for eIF4GIeNT-MS2,

expression of eIF4GIeD682-1079-MS2 was also lower than for

the controls (Figure 4D, lower panel). Finally, the eIF4GIe

construct comprising the C-terminal third of the protein

(eIF4GI1080-1599-MS2) clearly had no effect on NMD, despite

of its high expression level (Figure 4D).

Tethering of factors involved in translation to an mRNA could

possibly influence the mRNA’s translation rate, which would affect

NMD since NMD is a translation-dependent mechanism. It was

therefore important to test if tethering of PABPC1 or eIF4G

altered translation of the tethered mRNA. To test this, we

measured the translational activity with a luciferase reporter

system (Figure S3). We used a Renilla luciferase (Rluc) construct

containing 6 MS2 binding sites 82 nt downstream of the

termination codon as a reporter (Figure S3A). As an internal

reference und to normalize for variable transfection efficiencies,

we co-transfected a firefly luciferase-encoding plasmid (Fluc). Both

luciferase constructs were transfected into HeLa cells together with

the indicated MS2 fusion protein-encoding plasmids and 48 hours

post transfection the Rluc and Fluc activities in the cell lysates were

measured. The relative light units (RLU) of Rluc were then

divided by the RLU of Fluc (Figure S3B). These results showed

that translation of the Rluc reporter was not significantly altered

by tethering of full length PABPC1 (1–636-MS2), the first four

RRMs of PABPC1 (1–372-MS2), eIF4GIe (eIF4GIe-MS2) or the

eIF4GI core domain (eIF4GI682-1130-MS2) in comparison to

tethering of the LacZ control (LacZ-MS2). Thus we conclude that

the observed increase in NMD reporter mRNA caused by

tethering of PABPC1 and eIF4G constructs is not simply a

consequence of reduced translation of the reporter transcript.

Tethering eIF4GI and in particular also its core domain has

been reported to direct translation re-initiation on a downstream

ORF [54,55] and re-initiation downstream of a PTC has been

shown to inhibit NMD [56]. To address whether the observed

suppression of NMD by tethered eIF4G might be due to re-

initiation of translation downstream of the MS2 binding sites on

our minim NMD reporter construct A, we generated a version of

this reporter containing an in-frame C-terminal Flag tag (construct

AF; Figure S4A, B) and tested it in tethering experiments.

Paralleling the results obtained with construct A, RNA levels of

reporter construct AF increased 4 to 5 times upon tethering of full

length PABPC1 (1–636-MS2) or the eIF4GI core domain

(eIF4GI642-1130-MS2; Figure S4C). Western blotting of the

cell extracts from this experiment with an anti-Flag antibody did

not reveal any signal indicative for translation of this downstream

ORF (Figure S4D). The maximum mass of such a putative

polypeptide, initiating immediately after the MS2 binding sites

would be around 30 kDa, and initiation at an AUG about 240

nucleotides downstream of the MS2 binding sites would give rise

to a 21 kDa polypeptide (Figure S4B, A). Re-initiation in a

different frame cannot be excluded, but the two alternative frames

are interrupted by numerous termination codons that again would

Figure 4. Tethering of the core domain of eIF4GI inhibits NMD to a similar extent as PABPC1. (A) Schematic representations of the
eukaryotic initiation factor 4GI (eIF4GI; adapted from [53,80]) and the CBP80/20-dependent translation initiation factor (CTIF; adapted from [57]).
Functional domains are color-coded and labeled (RRM, RNA recognition motif; MIF4G, middle domain of eIF4G and HEAT-1 domain; MA3, HEAT-2
domain and MA3 region; W2, HEAT-3 and W2 domain). The letters (f, e, d, b, a) indicate the different N-termini of these five eIF4GI isoforms. Numbers
below represent the respective amino acid positions, with 1 depicting the N-terminus of the longest eIF4GI isoform, eIF4Gf. Isoform c, which is 1
amino acid shorter than isoform d, is not shown. (B) Tethering of the different eIF4GI isoforms shown schematically on the right (compare with
Figure 4A). HeLa cells were transiently transfected with the NMD reporter minim ter310 construct A or construct B, a plasmid encoding the indicated
eIF4GI-MS2 fusion protein and one encoding GPx1 for normalization. The assay was performed as in Figure 1C. Average minim mRNA levels and
standard deviations of at least four independent experiments, normalized to GPx1 mRNA and displayed relative to the LacZ-MS2 samples are shown,
except for eIF4Gld and eIF4Glb where the results of only one experiment are shown. Full length PABPC1-MS2 corresponds to 1–636-MS2 in previous
Figures. All MS2 fusion proteins contain a C-terminal HA-tag. The lower panel represents a western blot probed with anti-HA and anti-Tubulin
antibodies to assess the relative expression of the MS2-fusion proteins and of endogenous tubulin used as a loading control, respectively. (C) To test
for association of endogenous PABPC1 with eIF4GI variants, plasmids encoding the indicated eIF4GI isoforms or the eIF4GI core domain (eIF4GI682-
1130-MS2) fused to MS2-HA were transfected into HEK 293T cells. After 48 h, the cell extracts were subjected to immunoprecipitation using an anti-
MS2 antibody. LacZ-MS2 expressing cells served as a specificity control. The MS2 fusion proteins were detected with an antibody against the HA-tag
(upper panels) and endogenous PABPC1 was detected with the mouse anti-PABPC1 10E10 antibody (lower panels). 10% of the cell extracts before
(input) and the supernatant after (unbound) the immunoprecipitations, and 50% of the immunoprecipitated material (IP) were loaded on the gel. (D)
Tethering assay as in Figure 1C, but with the eIF4GI deletion mutants depicted schematically on the right. All MS2 fusion proteins also contain a C-
terminal HA-tag. Lower panel, western blot as in Figure 4B. (E) Tethering assay as in Figure 1C, but with CTIF-MS2. Average values and standard
deviations of three independent experiments are shown. The western blot shown on the right side was done as in Figure 4B.
doi:10.1371/journal.pone.0104391.g004
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be predicted to elicit NMD (Figure S4A). Thus, this result is

consistent with the view that the eIF4G-mediated NMD suppres-

sion works by a mechanism different from re-initiation, although

re-initiation formally cannot be ruled out.

Collectively, the results from tethering eIF4GI variants indicate

that in addition to NMD inhibition through recruitment of

PABPC1, eIF4GI can antagonize NMD by a second mechanism

that involves the core domain of eIF4GI and is independent of

PABPC1. Further our data suggest that these effects are not caused

by interference of the tethered fusion proteins with translation.

Tethering of CTIF does not inhibit NMD
It was reported that during early rounds of translation that can

occur on cap binding complex (CBC)-bound mRNAs, the

CBP80/20-dependent translation initiation factor (CTIF) func-

tionally replaces eIF4GI [57]. Since PTC-containing CBC-bound

mRNAs are targets for NMD [58–61] and since CTIF contains an

MIF4G domain resembling the one in the core domain of eIF4GI

(Figure 4A), we wanted to test if tethering of CTIF in the vicinity

of the PTC on our NMD reporter transcript minim ter310 would

also suppress NMD. Relative mRNA levels of reporter constructs

A and B from cells expressing CTIF-MS2 were compared to those

measured in cells expressing LacZ-MS2 (negative control) and

PABPC1-MS2 (positive control, Figure 4E). Although well

expressed, CTIF-MS2 did not increase minim ter310 reporter

transcript, suggesting that with regards to NMD inhibition, CTIF

cannot substitute for eIF4GI.

eIF3 may be involved in inhibiting NMD through the
eIF4GI core domain

Having revealed the capability of the tethered eIF4GI core

domain to inhibit NMD independently of PABPC1, we next asked

if this effect might be mediated by eukaryotic initiation factor 3

(eIF3). The central MIF4G domain of eIF4GI is well known to

serve as the binding platform for eIF3 [62,63], and previous

studies showed that the eIF3 subunits eIF3f and eIF3h are

involved in the protection of AUG-proximal PTCs from triggering

NMD [14]. When either of these two factors were depleted by

RNAi, otherwise NMD-resistant b-globin mRNAs with AUG-

proximal PTCs became susceptible to NMD [14].

To test whether NMD inhibition induced by the tethered

eIF4GI core domain (eIF4GI682-1130-MS2) requires the pres-

ence of eIF3f or eIF3h, we conducted the tethering assay in cells

depleted for each of these factors (Figure 5A). To this end, a

plasmid expressing an shRNA either against eIF3f or eIF3h was

co-transfected along with plasmids encoding the eIF4GI-MS2

fusion protein and the minim ter310 reporter construct A. Due to

the lack of specific antibodies, the efficacy of the eIF3f and eIF3h

knockdowns was assessed by measuring the corresponding mRNA

levels (Figure 5A, lower panel). As a control (control kd), an

shRNA that does not target any known human mRNA was

expressed. Depleting either of the two eIF3 subunits did not affect

the capacity of PABPC1-MS2 to suppress NMD (Figure 5A,

upper panel). However, the reporter mRNA increase induced by

tethering of the eIF4GI core domain (eIF4GI682-1130-MS2) was

reduced by approximately 40–50% when eIF3f or eIF3h was

depleted as compared to the control knockdown. Although the

effect is moderate, this result indicates that eIF3 is involved in the

PABPC1-independent mechanism by which eIF4GI antagonizes

NMD, but does not play a role in the PABPC1-dependent

pathway. Notably, our result is reminiscent of the results obtained

by Peixeiro and colleagues [14].

It should be noted that the reporter mRNA levels were much

higher when PABPC1 was tethered than when the eIF4GI core

domain was tethered (15-fold versus 6-fold). This is in contrast to

the results of the standard tethering assays, where these two fusion

proteins had a similar effect on the reporter (Figure 4D, compare

PABPC1-MS2 and eIF4GI682-1130-MS2). One difference is that

in the knockdown experiments, the time window for the expression

of the fusion protein and the reporter transcript is extended. It is

therefore possible that the reporter mRNA reaches its steady-state

level earlier when the core domain is tethered than when PABPC1

is tethered.

In vitro experiments have previously shown that subunit e of

eIF3 interacts directly with the eIF4GI core domain [64]. The

same study however also suggests a close association of eIF3f and

eIF3h (among other subunits) with eIF4GI. To test whether eIF3f

and eIF3h actually interact with the eIF4GI682-1130-MS2 fusion

protein, we co-expressed both factors transiently in HEK 293T

cells, immunoprecipitated the eIF4G core domain via its MS2

fusion in presence of RNase A and tested for its association of

eIF3f and eIF3h (Figure 5B). All recombinant proteins were HA-

tagged for detection by western blot. Once more, LacZ-MS2

served as a specificity control for the immunoprecipitation. eIF3f

and eIF3h both co-immunoprecipitated with eIF4GI682-1130-

MS2, but while eIF3h was not detected in the control immuno-

precipitation (LacZ-MS2), eIF3f even co-purified with LacZ-MS2.

The apparently unspecific co-precipitation of eIF3f prevents us

from drawing any conclusion regarding its association with the

eIF4GI core domain. On the other hand, our data confirms an

association between eIF3h and the core domain of eIF4GI.

Further evidence that the eIF4GI core domain interacts with

eIF3 was revealed when we identified the proteins co-immuno-

precipitating with eIF4GI682-1130-MS2 by mass spectrometry

(Table S1). Among the 22 top scoring interactors all 13 eIF3

Figure 5. The NMD antagonizing function of the tethered eIF4GI core domain requires eIF3 subunits. (A) The tethering assay combined
with depletion of eIF3f or eIF3h was performed as described in Figure 3A. The upper panel shows the relative minim ter310 reporter mRNA levels
upon tethering of LacZ-MS2, PABPC1-MS2 or the eIF4GI core domain fused to MS2 (eIF4GI682-1130-MS2) in mock depleted cells (control kd) or cells
depleted for eIF3f or eIf3h. Average values and standard deviations of three independent experiments are shown. The lower panel shows the relative
mRNA levels of eIF3f and eIF3h in the respective knockdown samples, which were measured as a surrogate for protein levels to assess the
knockdown efficacies, because no antibodies against these factors were available to us. Percentages of remaining eIF3f (white bars) or eIF3h (striped
bars) mRNA relative to the corresponding control knockdown condition are shown. (B) Immunoprecipitations to probe for interactions between the
eIF4GI core domain and eIF3 subunits f or h. HEK 293T cells were co-transfected with plasmids encoding LacZ-MS2 or eIF4GI682-1130-MS2 and eIF3f
or eIF3h. After 48 h, immunoprecipitations were carried out with an anti-MS2 antibody and analyzed by western blotting using an anti-HA antibody
(all proteins possess a C-terminal HA tag). The MS2 fusion proteins are shown in the upper panels, the eIF3 subunits in the lower panels of each
immunoprecipitation. 10% of the cell extracts before (input) and the supernatant after (unbound) the immunoprecipitations, and 50% of the
immunoprecipitated material (IP) were loaded on the gel. (C) Tethering assay as described in Figure 1C, but with different subunits of eIF3. LacZ-
MS2 served as negative control and was set to 100%, PABPC1-MS2 served as positive control. The eIF3 subunits h, f and e were tested individually
(eIF3f-MS2, eIF3h-MS2, eIF3e-MS2) and in combination with each other (eIF3f+h+e-MS2). Average values and standard deviations of three
independent experiments are shown. The lower panel shows a western blot to monitor the expression levels of the MS2 fusion proteins using an anti-
HA antibody. Endogenous b-actin was used to control for sample loading.
doi:10.1371/journal.pone.0104391.g005
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subunits were detected, strongly suggesting that eIF4GI associated

with the entire eIF3 complex.

Finally, we asked if the two eIF3 subunits f and h had the

capacity to stabilize a NMD reporter transcript in a tethering

experiment (Figure 5C). In addition, we also tested eIF3e, which

directly interacts with eIF4GI [64] and which has also been

implicated in NMD albeit as an NMD promoting rather than

inhibiting factor [65]. The relative mRNA levels of the two minim
ter310 constructs A and B were measured by RT-qPCR after co-

expression with eIF3h-MS2, eIF3f-MS2, eIF3e-MS2, or all three

eIF3 subunits together (eIF3h+f+e-MS2). LacZ-MS2 and full

length PABPC1-MS2 served as controls. As is readily visible in

Figure 5C (upper panel), none of these eIF3 subunits was able to

inhibit NMD when tethered into the vicinity of a PTC, neither

individually nor in combination. In contrast to subunits h and f

that expressed at high levels in these experiments, it should be

noted that eIF3e expression consistently remained very low

(Figure 5C, lower panel).

Taken together, the reduced capacity of the tethered eIF4GI

core domain to suppress NMD in the eIF3f and eIF3h

knockdowns (Figure 5A) and the association between the eIF4GI

core domain and eIF3 (Figure 5B and Table S1) identify the

eIF4G-eIF3 connection as part of a new NMD antagonizing

pathway that is genetically separable from the previously described

PABPC1-mediated NMD inhibition. That tethering of individual

eIF3 subunits failed to inhibit NMD (Figure 5C) could simply be

due to the inability of these MS2 fusion proteins to assemble

functional eIF3 complexes.

Discussion

Following up on our own previous study [22] and the work of

several other labs [15,21,23–25] showing that PABP antagonizes

NMD, we identified here the first two RRMs of PABPC1 as

necessary and the first three RRMs as sufficient for suppressing

NMD in a tethering assay (Figure 1). The linker domain clearly

also contributed to the NMD suppressing function of PABPC1,

likely by its capacity to multimerize PABPC1 to the reporter

transcript. Surprisingly and contradictory to previously reported

data [24], the eRF3 interacting C-terminal PABC domain of

PABPC1 was dispensable for suppression of NMD in our hands.

Therefore, our results do not support the model that NMD simply

depends on a competition between UPF1 and PABPC1 for

binding to eRF3 [25,31]. Similar to our results and pointing to a

crucial and conserved function of the RRMs, tethering of RRM1-

4 of the yeast Pab1p also led to a robust inhibition of NMD, albeit

weaker than full length Pab1p, whereas tethering of the C-terminal

half of Pab1p barely stabilized the NMD reporter transcript [15].

The finding that a fragment of Sup35p (the yeast eRF3 ortholog)

lacking the Pab1p interacting domain could suppress the slow

growth phenotype of a sup35D strain and was able to stabilize the

NMD reporter when tethered downstream of the PTC further

implies that the PABP:eRF3 interaction is not essential for normal

translation termination and for antagonizing NMD [32].

Since the portion of PABPC1 that is necessary and sufficient for

suppressing NMD encompasses the binding to eIF4G, we tested if

the PABPC1:eIF4G interaction was critical for stabilization of the

NMD reporter mRNA (Figure 2). Consistent with this idea, the

M161A point mutation reduced PABPC1’s capacity to inhibit

NMD (Figures 2A and S2). The fact that the RRM1-4 PABPC1

construct carrying the M161A mutation still co-precipitated to

some extent with eIF4GI-MS2 (Figure 2B) indicates that this

originally in vitro identified and tested point mutation [41,52] is

not sufficient to completely prevent binding to eIF4G in vivo.

Further evidence for a critical role of the PABPC1:eIF4G

interaction for the suppression of NMD was provided by PABPC1

tethering experiments in cells depleted for eIF4G, which resulted

in diminished reporter mRNA levels (Figure 3). Since this

interaction is required for the PABP:eIF4G:eIF4E-mediated

circularization of mRNAs, our results are consistent with the idea

that this ‘‘closed-loop’’ mRNP structure is critical for correct

translation termination and recycling of ribosomal subunits.

This hypothesis predicted that tethering of eIF4G should also

suppress NMD. Consistent with this view, the full-length eIF4GI

isoforms capable of interacting with PABPC1 (isoforms d, e and f)

increased the reporter transcript in tethering assays (Figure 4B,
C). A moderate increase was also induced by tethering the

eIF4GIe constructs NT and D682-1079, which both contain the

binding sites for PABPC1 and for eIF4E and hence could

potentially bring the 59 and the 39 end of the reporter mRNA close

to the PTC (Figure 4D). However, complicating the situation,

these two eIF4GI variants had essentially the same effect on the

construct B reporter mRNA, indicating that the observed reporter

mRNA increase in this case did not require the PABP:eIF4-

G:eIF4E complex to be close to the PTC. It is therefore also not

clear, whether this mRNA increase resulted from an inhibition of

NMD or from a general mRNA stabilization.

Most interestingly, tethering of the eIF4G core domain alone,

encompassing the RRM and the MIF4G domain, also efficiently

suppressed NMD. Since the eIF4G core domain lacks both the

PABPC1 and the eIF4E binding sites, this effect cannot be

attributed to formation of a ‘‘closed loop’’ configuration and

therefore provides evidence for an independent second mechanism

of NMD suppression. We hypothesized that eIF4G in the vicinity

of a PTC might inhibit NMD by promoting re-initiation of

translation further downstream on the reporter mRNA. However,

our attempt to detect polypeptides originating from such putative

re-initiation events on the minim reporter transcript failed (Figure
S4). Thus, although we have no evidence for re-initiation being

involved, we cannot either rule it out based on these negative

results.

Finding that the eIF4G core domain was capable of antago-

nizing NMD suggested that the same might be true for CTIF,

because CTIF contains a highly homologous MIF4G domain and

was reported to functionally replace eIF4G during translation

initiation of CBC-associated mRNAs [57]. In the tethering assay,

however, CTIF was not capable of antagonizing NMD despite of

its robust expression (Figure 4E). The specific motifs in the

eIF4G core domain responsible for the observed NMD suppres-

sion remain therefore to be identified.

A well-characterized interactor of the eIF4G core domain is the

eIF3 complex [62,63]. Besides its function in translation initiation,

eIF3 was shown to be involved in disassembling the post-

termination ribosome and recycling of the ribosomal subunits in

a reconstituted in vitro system [66]. Moreover, a role for eIF3 in

translation termination has recently been documented in yeast

cells [67]. Specifically, the pulldown assays of Beznoskova and

colleagues provided evidence for an association of eIF3 with

release factors Sup45p (eRF1 ortholog) and Sup35p (eRF3

ortholog) as well as with the ribosome recycling factor Rli1

(ABCE1 ortholog). Furthermore, there is also evidence for a link

between eIF3 and NMD, but collectively the data does not provide

an easily interpretable picture: subunit a was shown to interact

with phosphorylated UPF1 [68], subunit e was identified as an

essential NMD factor associated with UPF2 [65] and the CTIF-

interacting subunit g inhibits NMD when down-regulated [69],

whereas subunits f and h are required to prevent NMD of b-globin

reporter transcripts with AUG proximal PTCs [14].
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Knockdown of eIF3f and h rendered the otherwise NMD-

resistant b-globin transcript with a PTC at codon 15 sensitive to

NMD [14]. Peixeiro and colleagues speculated that eIF3 remains

associated with the ribosome during the early phase of translation,

thereby retaining the ribosome’s capacity to terminate correctly

and hence inhibit NMD. Our finding that the eIF4GI core

domain-mediated NMD inhibition is sensitive to decreased eIF3f

and h levels (Figure 5A) is consistent with the proposed function

of these two eIF3 subunits as promoters for correct translation

termination. However, direct tethering of eIF3f and h, individually

or together, to our NMD reporter construct had no effect on the

reporter mRNA level (Figure 5C). Such a negative result in a

tethering assay could always be due to technical issues, for example

functional inactivation of a protein by its fusion to the MS2 coat

protein, and remains therefore inconclusive. Nevertheless, our

data collectively corroborate previous reports indicating a key role

of eIF3 in the process of translation termination and therewith in

the decision of whether or not NMD gets triggered.

In summary, the work presented here delineates two apparently

independent pathways involved in preventing NMD. One relies on

eIF4G interacting with PABP and hence presumably on the

formation of the ‘‘closed-loop’’ mRNP structure, and the other

involves the eIF4G-binding eIF3 complex. More research is

necessary to elucidate the precise function of the eIF3 complex in

translation termination and NMD and the consequence of the

closed-loop mRNP structure for these processes.

Materials and Methods

Plasmids
The MS2 binding sites-containing minim and TCRb reporter

genes were described previously [22]. Minim ter310 construct AF

was generated by adding a Flag tag sequence to the 39end of the

minim ter310 construct A reporter using fusion PCR. For the

tethering experiments, the different mutants/deletions of PABPC1

were generated by PCR or fusion-PCR with pCMV-PABPC1-

MS2-HA [22] as a template (for plasmids and primer sequences

see Table S2 and Table S3). The PCR-amplified fragments were

cut with KpnI and BamHI and cloned into a KpnI-BamHI

pCMV-MS2-HA vector backbone. Site-directed mutagenesis to

generate the M161A mutation in PABPC1 was performed using

the QuikChange XL Site-Directed Mutagenesis Kit (Stratagene)

using oligonucleotides 59- GCTATTGAAAAAATGAATG-

GAGCGCTCCTAAATGATCG-39 and 59- CGATCATTTAG-

GAGCGCTCCATTCATTTTTTCAATAGC-39 with the muta-

tion. PABPC1 variants without the MS2 fusion protein were

created by PCR amplification and insertion into a pCMV-HA

containing vector backbone using NheI and SacII restriction sites.

For the eIF4GI mutants/deletions, the N-terminal myc-tag in

pCDNA3.1-myc-eIF4GIf (obtained from Simon Morley, Univer-

sity of Sussex) [70] was replaced by a PCR amplified DNA

fragment containing HA-MS2, generating pCDNA3.1-HA-MS2-

eIF4GIf (not used in this study). This plasmid was subsequently

used for the generation of pCMV-eIF4GIf-MS2-HA by PCR

amplification of the eIF4GIf ORF and insertion into pCMV-

PABPC1-MS2-HA with PvuI and KspI. The MS2-HA sequence

had to be reintroduced by PCR amplification of the sequence

using pCMV-PABPC1-MS2-HA as template and insertion in

between the KspI and XbaI restriction sites (primers rj26 and

om214, Table S3). eIF4GI isoforms were PCR-amplified using

pCMV-eIF4GIf-MS2-HA as template and inserted between the

PvuI and SpeI restriction sites of the same vector. The rest of the

eIF4GI constructs were generated by PCR or in the case of

pCMV-eIF4GIeD682-1079-MS2-HA by fusion PCR using

pCMV-eIF4GIf-MS2-HA as template. They were inserted into

pCMV-eIF4GIf-MS2-HA between the PvuI and SacII restriction

sites. pCMV-eIF3f-MS2-HA and pCMV-eIF3h-MS2-HA were

PCR amplified from HeLa cDNA and inserted into pCMV-

eIF4GIf-MS2-HA using the PvuI and SacII restriction sites.

pCMV-HA-MS2-eIF3e was created by PCR amplification of

eIF3e using a template plasmid obtained from John W. Hershey

(UC Davis Cancer Center, Sacramento, CA) and inserting it into a

pCMV-HA-MS2 vector backbone using the HindIII and XhoI

restriction sites. MS2-less eIF3 vectors were created by cloning the

eIF3 open reading frame into a pCMV-HA containing vector

backbone using PvuI and SacII restriction sites. pCMV-CTIF-

MS2-HA was created by PCR amplification of the CTIF ORF

using pCDNA3-FLAG-CTIF as template (obtained from Yoon Ki

Kim, Korea University, Seoul) [57]. The amplified fragment was

inserted into pCMV-PABPC1-MS2-HA using the BamHI and

SalI restriction sites. pCMV-MS2-HA and pCMV-LacZ-MS2-HA

were described previously [22]. pCMV-SLBP-MS2-HA was

created by PCR amplification of the SLBP ORF using

pcDNA3-HA-SLBP (obtained from Daniel Schümperli, University

of Bern) as template and inserting it into pCMV-PABPC1-MS2-

HA using the KpnI and BamHI restriction sites. The

pCMVrGPx1-TGC vector used for normalization was described

previously [71]. pcDNA3-HA-EGFP used for normalization in the

depletion experiments was provided by Daniel Schümperli [72].

For the knockdowns, oligonucleotides encoding for shRNAs

were inserted between the BglII and HindIII restriction sites in the

pSUPERpuro vector [73]. The target sequence for depletion of

eIF4GI was 59-GAGCGAAGCTGCTGCAGAA-39 [74]. For

eIF3f it was 59-ATACGCGTACTACGACACT-39 and for eIF3h

59-GATCGGCTTGAAATTACCA-39 [14]. The sequence for the

control shRNA is described elsewhere [75]. The inserts of all

plasmids were verified by Sanger sequencing. Sequences are

available upon request.

For the luciferase assay experiment, a pcDNA vector containing

the Renilla luciferase ORF with 6 MS2 binding sites 82 nt

downstream of the termination codon was used (pcDNA-Renilla-

6MS2bs, obtained as a gift from Melissa J. Moore). As a

normalizer, a pCI-neo plasmid (Promega) with the firefly luciferase

ORF inserted between the NheI and NotI restriction sites (pCI-

neo-FL) was used (a kind gift from Christoph Schweingruber).

Cell culture
HeLa and HEK 293T cells were grown in Dulbecco’s modified

Eagle’s medium (DMEM, Invitrogen) supplemented with 10%

fetal calf serum (FCS), 100 U/mL penicillin and 100 mg/mL

streptomycin under a 5% CO2 atmosphere.

Transient transfection and RT-qPCR
For the tethering experiments 26105 HeLa cells per sample

were seeded into 6-well plates. The next day transfection was

performed using DreamFect (OZ Biosciences) transfection reagent

with 100 ng NMD reporter (minim ter310 construct A or B; or

TCRb ter68 construct A or B), 50–100 ng pCMVrGPx1-TGC

[71] as a normalizer and 400–800 ng of the MS2 fusion protein

per sample. 400 ng were used for CTIF, PABPC1 and eIF3

variants, 800 ng were used for LacZ and eIF4GI variants. The

cells were harvested 48 h after transfection. For the tethering

experiments in Figure 1 and Figure S1, total RNA was

extracted with the ‘‘Absolutely RNA RT-PCR Miniprep Kit’’

(Stratagene). For the rest of the experiments, total RNA was

extracted using the Guanidium Thiocyanate–Phenol–Chloroform

Extraction as described previously [76]. Reverse transcription was

performed with 1 mg of RNA in a volume of 20 mL using 300 ng
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random hexamers, 0.4 nM dNTPs, 10 mM DTT, 16 Affinity-

Script RT Buffer and 1 mL of AffinityScript Multiple Temperature

Reverse Transcriptase (Agilent Technologies) according to the

manufacturer’s manual. qPCR measurements for experiments in

Figure 1 and Figure S1 was performed as described earlier [75].

The other experiments were measured with the same mRNA

assays, but with Brilliant III Ultra Fast QPCR Master Mix (Agilent

Technologies) using a Rotorgene 6000 (Corbett). eIF3f and eIF3h

mRNA in Figure 5A was measured using Brilliant III Ultra Fast

SYBR Green QPCR Master Mix (Agilent Technologies), primers

59-CACCCAGTCATTTTGGCCTC-39 and 59-CGA-

CAGTTCCCAACAGGGTC-39 (5 mM each) for eIF3f and

primers 59-CTGCTCATTGCAGGCCAGAT-39 and 59-

GAGCCTGGGCCATGAAGAG-39 (5 mM each) for eIF3h [14].

RNAi
Knockdowns were achieved by transfecting pSUPERpuro

plasmids containing appropriate target sequences. Transfections

were carried out as described above, except that 400 ng

pSUPERpuro plasmid was added to the transfections. 18–20 h

after transfection, 1.5 mg/mL puromycin was added to the cell

culture medium. After 48 h under selection, the cells were cultured

for the final 24 h in puromycin-free medium. 96 h post

transfection, the cells were harvested.

Co-immunoprecipitation
36106 HEK 293T cells were seeded in 10-cm dishes and

transfected the next day with polyethyleneimine (105 mM, pH 7).

0.4 mL/mg DNA were used. For PABPC1 and eIF3 constructs

3 mg plasmid, for LacZ and eIF4GI constructs 10 mg plasmid was

used. After 48 hours, 66106 cells were harvested, washed in PBS

and lysed for 10 minutes in hypotonic gentle lysis buffer (10 mM

Tris-Hcl pH 7.5, 10 mM NaCl, 2 mM EDTA, 0,5% Triton X-

100 supplemented with 16Halt Protease Inhibitor from Thermo

Scientific and 125 mg/mL RNase A) on ice. After 10 min NaCl

was brought to 150 mM. After centrifugation (16000 g, 15 min,

4uC), 200 mL supernatant was removed and stored as ‘‘input’’.

The rest (400 ml) was incubated with 5 mg Anti-Enterobacterio

Phage MS2 Coat Protein antibody (Millipore) for 2 h at 4uC on a

turning wheel. 30 mL Dynabeads Protein G (Life Technologies)

were then added and incubated for 2 h at 4uC on a turning wheel.

200 mL was afterwards stored as ‘‘unbound’’. The samples were

then washed five times with 1 ml 10 mM Tris-HCl (pH 8),

150 mM NaCl, 0.1% NP-40. Immunoprecipitates were stored in

100 mL 26 SDS buffer (2% SDS, 60 mM Tris pH 6.6, 10%

glycerol, 200 mM DTT) and separated by SDS-PAGE followed

by western blotting.

Immunoblotting
For the tethering experiments total cell extract was gained from

aliquots of the harvested cells. Hypotonic gentle lysis buffer

(10 mM Tris-Hcl pH 7.5, 10 mM NaCl, 2 mM EDTA, 0,5%

Triton X-100 supplemented with 16Halt Protease Inhibitor from

Thermo Scientific) was added to a concentration of 10000 cells/

mL and incubated on ice for 10 min. After centrifugation (16000 g,

15 min, 4uC) the same amount of 26 SDS buffer (2% SDS,

60 mM Tris pH 6.6, 10% glycerol, 200 mM DTT) was added

(final concentration 5000 cells/mL).

For the tethering experiments an equivalent of 26105 cells were

separated by electrophoresis on a 10% (PABPC1 and eIF3 fusion

proteins) or a 7% (eIF4GI fusion proteins) SDS-polyacrylamide

gel. For the immunoprecipitations an equivalent of 46105 cells

were loaded for ‘‘input’’ and ‘‘unbound’’, and the equivalent of

26106 cells were loaded for ‘‘IP’’. The proteins were transferred

onto Optitran BA-S 85 reinforced nitrocellulose (GE Healthcare)

by electro-blotting. Primary antibodies and dilutions used were

Mouse anti-HA C5 (Enogene Biotech, Figures 4D, 4E, 5C, S3)

1:1000, mouse anti-HA 12CA5 (Roche, Figures 1C, 2B, S3)

1:1000, rabbit anti-HA Y11 (Santa Cruz, Figures 2A, 3B,
4B, 4C, 5B, S1) 1:1000, mouse anti-Flag OctA probe (D-8)

(Santa Cruz, Figure S4C), 1:1000, mouse anti-SMB/B9 [77]

(Figure 1C) 1:400, rabbit anti-actin (Sigma Aldrich, Figur-
es 5C, S3) 1:1000, mouse anti-tubulin B-7 (Santa Cruz,

Figures 2A, 3B, 4B) 1:1000, mouse anti-Tyrosine-Tubuline

(Sigma Aldrich, Figure 4D, 4E) 1:5000, rabbit anti-CPSF100

[78] (Figure S2) 1:10000, rabbit anti CPSF73 [79] (Figure S3)

1:5000, rabbit anti-eIF4GI (obtained from Nahum Sonenberg,

McGill University Montreal; Figure 3B) 1:1000, mouse anti-

PABPC1 10E10 (Santa Cruz, Figures 4C, S1) 1:1000. Second-

ary antibodies from LI-COR Biosciences used were donkey anti-

rabbit IRDye800CW (Figure 2A), donkey anti-mouse IR-

Dye680LT (Figure 2A), goat anti-mouse IRDye800CW (Figur-
es 2B, 4C, 4D, 4E, 5C, S1), goat anti-rabbit IRDye800CW

(Figures 3A, 4B, 4C, 5B, 5C) and goat anti-mouse IR-

Dye680LT (Figures 3A, 4B, S1), all diluted 1:10000. An

Odyssey Infrared Imaging System was used for detection (LI-

COR Biosciences). For Figures 1C and S3, HRP-conjugated

anti-rabbit IgG and HRP-conjugated anti-mouse IgG (Promega,

diluted 1:2500) were used as secondary antibodies and chemilu-

minescence was detected using ECL+ Plus Western blotting

detection system (Amersham) and a Luminescent Image Analyzer

LAS-1000 (Fujifilm).

Luciferase assay
For the luciferase assay experiments, two wells with 26105

HeLa cells per sample were seeded into 6-well plates. The next day

100 ng Renilla luciferase reporter, 20 ng Firefly luciferase reporter

and 400 ng MS2 fusion protein per well were transiently

transfected using DreamFect (OZ Biosciences) transfection

reagent. One day later the cells from each sample were pooled

and redistributed equally into 3 wells on a 6-well plate. The cells

were harvested 48 h after transfection according to the Dual-

Luciferase Reporter Assay System (Promega) technical manual.

The luciferase measurements were subsequently performed

according to the instructions in the technical manual on a Tecan

Infinite M1000PRO microplate reader.

Mass spectrometry
Samples were reduced with 50 mM DTT in 50 mM Tris/HCl

pH 8 at 50uC for 30 min, and alkylated at 37uC for 30 min in the

dark with 50 mM IAA Solution in 50 mM Tris/HCl pH 8, and

digested 1 h at 50uC with Trypsin 100 ng/mL. Each digest was

analyzed in LCMS. A volume of 10 mL was loaded onto a self-

made pre-column (Magic C18, 5 mm, 300 Å, 0.15 mm

i.d.630 mm length) at a flow rate of ,5 ml/min with solvent A

(0.1% formic acid in water/acetonitrile 98:2). After loading,

peptides were eluted in back flush mode onto the analytical nano-

column (Magic C18, 5 mm, 100 Å, 0.075 mm i.d. 675 mm

length) using an acetonitrile gradient of 5% to 40% solvent B

(0.1% formic acid in water/acetonitrile 4.9:95) in 40 min at a flow

rate of ,400 nl/min. The column effluent was directly coupled to

an LTQ-orbitrap XL mass spectrometer (ThermoFisher, Bremen,

Germany) via a nanospray ESI source operated at 1700 V. Data

acquisition was made in data dependent mode with precursor ion

scans recorded in the Fourier transform detector (FT) with

resolution of 60’000 (@ m/z = 400) parallel to five fragment

spectra of the most intense precursor ions in the linear iontrap.
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CID mode settings were: Wideband activation on; precursor ion

selection between m/z range 360–1400; intensity threshold at 500;

precursors excluded for 15 sec. CID spectra interpretation was

performed with EASYPROT on a local, dual quad core processor

server run under linux. The following variable modifications were

used: carboamidomethylated Cys (no limit), Met oxidation (limited

to 1), Asn/Gln deamidation (2), phosphorylation (limited to 1).

Parent and fragment mass tolerances were set to 10 ppm and

0.6 Da, respectively. All protein identifications were accepted with

a false discovery rate of 1% and a number of unique peptides

superior or equal to 2. Semi-quantitative protein abundance is

assessed with the PMSS score, which is the sum of the z score of

peptides belonging to the same protein

Supporting Information

Figure S1 LacZ-MS2 is a better control than MS2 alone.
HeLa cells were transiently transfected with the TCRb ter68

reporter construct A or construct B together with an MS2 fusion

protein and GPx1 as a normalizer. The MS2 protein alone (MS2),

the truncated LacZ with a C-terminal MS2 fusion (LacZ-MS2)

and the histone RNA hairpin-binding protein with a C-terminal

MS2 fusion (SLBP-MS2) were tested. Additionally a plasmid not

containing any MS2-fusion protein was used (Mock). After

48 hours total RNA was extracted followed by RT-qPCR.

Reporter mRNA increase was calculated in relation to the control

(LacZ-MS2, set to 100). The result of one experiment is shown.

(PDF)

Figure S2 The M161A mutation also reduces the
stabilization of a TCRb ter68 NMD reporter. Tethering

assay with a TCRb reporter construct. Construct A has a cassette

of 6 MS2 binding sites directly after the PTC at amino acid

position 68, construct B has the same cassette further downstream

[22]. HeLa cells were transiently transfected with the NMD

reporter TCRb ter68 construct A or construct B and plasmids

encoding the indicated MS2-fusion proteins (LacZ, 1–636, 1–372,

1–372M161A). GPx1 was again used as a normalizer. Each bar

represents the average and standard deviation of six independent

experiments. On the right a western blot is shown using an anti-

HA antibody to detect the transfected MS2-fusion proteins and

antibodies against CPSF100 and actin as loading controls.

(PDF)

Figure S3 Tethering of PABPC1 and eIF4GI MS2 fusion
proteins to a reporter mRNA does not influence its
translational activity. (A) Schematic representation of the

Renilla luciferase reporter (Rluc 6MS2). (B) Renilla luciferase

activity was measured upon tethering of various MS2-fusion

proteins. HeLa cells were transiently transfected with a plasmid

vector containing the Renilla luciferase ORF followed by 6 MS2

binding sites 82 nt downstream of the translation termination

codon and plasmids encoding the indicated MS2 fusion proteins

(LacZ, 1–636, 1–372, eIF4GIe, eIF4GI682-1130). A Firefly

luciferase containing plasmid vectors was cotransfected as a

normalizer. The results are shown as the ratio between the

measured Relative Light Units (RLU) of both luciferases (RLU

RLuc/FLuc). Each bar represents the average and standard

deviation of three independent experiments. On the right a

western blot is shown using an anti-HA antibody to detect the

transfected MS2-fusion proteins. An antibody against CPSF73 was

used as loading control. Due to the size of eIF4GIe, the

corresponding sample had to be run on a different gel than the

rest of the samples (eIF4GIe-MS2).

(PDF)

Figure S4 No evidence for translation reinitiation
downstream of the MS2 binding sites. (A) Amino acid

sequences encoded in all 3 frames by the minim sequence

downstream of the MS2 binding sites in reporter construct A.

To monitor putative translation of the single longer ORF (in frame

2), a Flag-tag was inserted immediately before the stop codon into

minim ter310 construct A giving construct AF (schematically

illustrated in (B)). The longest possible ORF, initiating at a non-

AUG directly 39 of the MS2 binding sites (6MS2) and terminating

after the Flag tag, would result in a polypeptide with a molecular

weight of ,30 kDa (dashed box, max. ,30 kDa). Reinitiation at

the indicated AUG in frame 2 would generate a ,21 kDa

polypeptide. (C) Testing if tethered PABP or eIF4G promotes

translation reinitiation. HeLa cells were transiently transfected

with minim ter310 constructs A or AF and plasmids encoding the

indicated MS2-fusion proteins (LacZ, PABPC1 1–636, eIF4GI

642–1130). Cotransfected GPx1 was used as a normalizer. (D)

Western blot showing expression of the MS2 fusion proteins using

an anti-HA antibody (upper panel). In the central panel an anti-

Flag antibody was used. As a control HeLa cell extract containing

a transiently transfected blue fluorescent protein with a C-terminal

Flag tag was loaded (EBFP-Flag). Actin was used as a loading

control (lower panel). The amount of cell equivalents loaded is

indicated at the top of the corresponding lane.

(PDF)

Table S1 Proteins identified to interact with the core
domain of eIF4GI. Mass spectrometric analysis was carried out

on immunoprecipitations of eIF4GI682-1130-MS2. The identified

proteins are ordered by Protein Match Score Summation (PMSS).

(PDF)

Table S2 Plasmids used in this study. The full name, the

oligonucleotides used for cloning and a short description are

indicated. The oligonucleotide sequences can be found in Table

S3.

(PDF)

Table S3 Oligonucleotides used for cloning in this
study.
(PDF)
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